
IoTivity Simulator

ς User Guide

1 CONTENTS

2 Simulator ... 3

2.1 Detailed Description ... 3

2.1.1 Service Provider: ... 3

2.1.2 Client Controller: ... 3

2.2 Installing and Launching eclipse plug-in ... 4

2.2.1 Direct Installation .. 4

2.2.2 Building the source code and Installing manually .. 7

2.3 Simulator Eclipse plug-in demonstration .. 9

2.3.1 Simulator Manager ... 9

2.3.2 Simulator Resource server .. 12

2.3.3 Response Builder... 13

2.3.4 Simulator Client ... 14

2.3.5 Simulator Remote Resource ... 15

2.3.6 Request Generator and Response Validator... 15

2 SIMULATOR

IoTivity Simulator simulates the OIC specific server or client. Using Simulator, developers can test the

implementations without having real hardware. Also manufactures can provide reference profiles using

simulator. It enables the users/developers to test the usage of the device before purchasing the real

device. Using Simulator, users can create, delete and find resources in the network, send/receive the

requests/responses for various types of messages, as well as automate the request/response generation

and validation.

IoTivity Simulator is an eclipse plugin tool. It provides two perspectives: Service Provider and Client

Controller.

1. Service Provider

¶ OIC resources can be simulated by using Resource model definition(RAML) files. Alternatively

they can also be created Using GUI wizards provided.

¶ It provides support for changing attribute values both manually and automatically.

2. Client Controller

¶ Simulates functionality of OIC client.

¶ It provides support for sending automatic requests to remote resources with the help of remote

resource RAML file.

2.1 DETAILED DESCRIPTION
Simulator can be used as Service Provider or Client Controller or both.

2.1.1 Service Provider:

¶ This module manages creation, deletion, request handling and notifications of simulated

resources.

¶ Handles the requests received and sending appropriate responses to clients.

¶ Facilitates updating of simulated resourceΩ values automatically using resource model definition

(RAML) and notifying the observers.

¶ Provides the developers flexibility of giving the interval time for updating attributes value within

a single simulated resource.

2.1.2 Client Controller:

¶ This module finds the resources of interested types available in the IP or Non-IP based network.

¶ Handles subscription to found resources for their value change notifications.

¶ Provides option for sending different kind of requests manually and displays the response

payload received.

¶ Provides option to send different kind of automated requests (GET/PUT/POST) and validates the

responses received automatically as per the RAML file provided.

2.2 INSTALLING AND LAUNCHING ECLIPSE PLUG-IN

Two options are available to install the eclipse plugins. Choose any one of these options and proceed
further as explained in the following sections.

Option 1: Direct Installation.
Option 2: Building the source code and Installing manually.

2.2.1 Direct Installation

Pre-requisites

1. Linux machine with internet access.

2. Eclipse IDE(4.4 or above) for linux platform. If you need to install Eclipse, you can download it

from http://www.eclipse.org/downloads.

Steps

1. Start eclipse.
2. Select IŜƭǇ Ҕ Lƴǎǘŀƭƭ bŜǿ {ƻŦǘǿŀǊŜΧ. In the dialog appears enter below mentioned URL in Work

with text field and press enter key. Try with any of these URLs. If one URL doesn't seem to work,

then try the alternative links. (Following are the links for latest version. You can find the links to
specific versions under ñAvailable Versionsò section).

Á https://downloads.iotivity.org/tools/simulator/latest

Á https://mirrors.kernel.org/iotivity/tools/simulator/latest [alternative]

Á ftp://mirrors.kernel.org/iotivity/tools/simulator/latest [alternative]

http://www.eclipse.org/downloads
https://downloads.iotivity.org/tools/simulator/latest
https://mirrors.kernel.org/iotivity/tools/simulator/latest
ftp://mirrors.kernel.org/iotivity/tools/simulator/latest

3. Uncheck Group items by category checkbox and Select simulator component and click Next.
4. Review the features to be installed and then click Next.

5. Read the license aggrement and then select I accept the terms of the license agreement. Click Finish.

6. If you get security warning as shown below then click OK.

7. Once installation is done, you will be asked to restart the eclipse. Click Yes.

Available Versions

1.2.1 (Latest)

https://downloads.iotivity.org/tools/simulator/1.2.1

https://mirrors.kernel.org/iotivity/tools/simulator/1.2.1 (Alternative)

ftp://mirrors.kernel.org/iotivity/tools/simulator/1.2.1 (Alternative)

1.2.0

https://downloads.iotivity.org/tools/simulator/1.2.0

https://mirrors.kernel.org/iotivity/tools/simulator/1.2.0 (Alternative)

ftp://mirrors.kernel.org/iotivity/tools/simulator/1.2.0 (Alternative)

1.1.0

https://downloads.iotivity.org/tools/simulator/1.1.0

https://mirrors.kernel.org/iotivity/tools/simulator/1.1.0 (Alternative)

ftp://mirrors.kernel.org/iotivity/tools/simulator/1.1.0 (Alternative)

2.2.2 Building the source code and Installing manually

Pre-requisites

1. Linux machine with internet access.
2. Eclipse IDE(4.4 or above) with PDE(Plug-in Development Environment) support (Please refer Eclipse

PDE setup section given below).
3. Simulator has dependency on java, if java is not available in your system install the same

(https://help.ubuntu.com/community/Java). We need java compiler 1.7 or above. After installing,
Set the JAVA_HOME environment variable(ex: export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-
i386).

4. Download IoTivity codebase from https://www.iotivity.org/downloads/ and extract it. (Note: For
IoTivity version 1.2.1, an additional patch is required. Download the patch from
https://gerrit.iotivity.org/gerrit/#/c/15369/2 and apply it to the downloaded IoTivity source code).

5. 9ȄŜŎǳǘŜ ǘƘŜ άǎŎƻƴǎ {La¦[!¢hwҐм TARGET_TRANSPORT=IP TARGET_OS=linux SECURED=0έ
command from the IoTivity home directory(Location where the codebase is extracted. Ex:
/home/user1/Downloads/iotivity) in the terminal to build Simulator specific libraries along with the
IoTivity native libraries.

6. During the build process, you will be prompted to download the packages required for build such as
tinycbor and yaml. Please download those packages using the command which will be shown on-
screŜƴΦ !ŦǘŜǊ ŘƻǿƴƭƻŀŘ ŎƻƳǇƭŜǘŜǎΣ ŜȄŜŎǳǘŜ ǘƘŜ ŎƻƳƳŀƴŘ άǎŎƻƴǎ {La¦[!¢hwҐм
TARGET_TRANSPORT=IP TARGET_OS=linux SECURED=0έ ŀƎŀƛƴ ǘƻ ŎƻƴǘƛƴǳŜ ǘƘŜ ōǳƛƭŘ ǇǊƻŎŜǎǎΦ

7. Simulator application requires libconnectivity_abstraction.so, liboc.so, liboctbstack.so, and
liboc_logger.so native libraries and libSimulatorManager.so, libRamlParser.so simulator specific
libraries, all of which are generated in ~/<IoTivity home directory>/out/linux/<arch>/release
directory.

https://downloads.iotivity.org/tools/simulator/1.2.1
https://mirrors.kernel.org/iotivity/tools/simulator/1.2.1
ftp://mirrors.kernel.org/iotivity/tools/simulator/1.2.1
https://downloads.iotivity.org/tools/simulator/1.2.0
https://mirrors.kernel.org/iotivity/tools/simulator/1.2.0
ftp://mirrors.kernel.org/iotivity/tools/simulator/1.2.0
https://downloads.iotivity.org/tools/simulator/1.1.0
https://mirrors.kernel.org/iotivity/tools/simulator/1.1.0
ftp://mirrors.kernel.org/iotivity/tools/simulator/1.1.0
https://help.ubuntu.com/community/Java
https://www.iotivity.org/downloads/
https://gerrit.iotivity.org/gerrit/#/c/15369/2

Eclipse PDE setup

Please ignore this step if PDE is already installed in eclipse.

¶ hǇŜƴ 9ŎƭƛǇǎŜ Ҧ IŜƭǇ Ҧ Lƴǎǘŀƭƭ ƴŜǿ ǎƻŦǘǿŀǊŜ Ҧ !ŘŘ Ҧ
Location(http://download.eclipse.org/eclipse/updates/4.4 (Version based on your eclipse), Name
can be given anything, It will display all the list of updates available, select all PDE related items and
follow the wizard steps to complete the installation.

Setting up and launching the Eclipse plug-in projects

1. LƳǇƻǊǘ ǘƘŜ ōŜƭƻǿ ǇǊƻƧŜŎǘǎ ƛƴǘƻ 9ŎƭƛǇǎŜ L59 ǳǎƛƴƎ CƛƭŜ Ҧ LƳǇƻǊǘ Ҧ {ŜƭŜŎǘ ϥ9ȄƛǎǘƛƴƎ ǇǊƻƧŜŎǘǎ ƛƴǘƻ
²ƻǊƪǎǇŀŎŜϥ ǳƴŘŜǊ DŜƴŜǊŀƭ ŎŀǘŜƎƻǊȅ Ҧ ŎƭƛŎƪ ƴŜȄǘ Ҧ .ǊƻǿǎŜ ǘƻ ǘƘŜ ƭƻŎŀǘƛƻƴ ŀǎ ƎƛǾŜƴ ōŜƭƻǿ Ҧ/ƭƛŎƪ
Finish.

¶ Service Provider Plugin: ~/<IoTivity home directory>/service/simulator/java/eclipse-
plugin/ServiceProviderPlugin

¶ Client Controller Plugin: ~/<IoTivity home directory>/service/simulator/java/eclipse-
plugin/ClientControllerPlugin

¶ Simulator Java SDK: ~/<IoTivity home directory>/service/simulator/java/sdk
2. Service Provider Plugin and Client Controller Plugin are the Simulator plugin projects.
3. Create a folder named libs in both the plugin projects. (Right-/ƭƛŎƪ ƻƴ ǘƘŜ {ŜǊǾƛŎŜtǊƻǾƛŘŜǊtƭǳƎƛƴ Ҧ
bŜǿ Ҧ CƻƭŘŜǊ Ҧ {ǇŜŎƛŦȅ ǘƘŜ ŦƻƭŘŜǊ ƴŀƳŜ ŀǎ libs Ҧ CƛƴƛǎƘΦ tƭŜŀǎŜ Řƻ ǘƘŜ ǎŀƳŜ ŦƻǊ
ClientControllerPlugin project as well.)

4. Export the Simulator Java SDK project as a JAR file named Simulator.jar. (Right click the Simulator
WŀǾŀ {5Y ǇǊƻƧŜŎǘ Ҧ 9ȄǇƻǊǘ Ҧ ǎŜƭŜŎǘ ϥW!w ŦƛƭŜϥ ƻǇǘƛƻƴ ǳƴŘŜǊ WŀǾŀ Ҧ bŜȄǘ Ҧ {ǇŜŎƛŦȅ ǘƘŜ ƴŀƳŜ ƻŦ ǘƘŜ
JAR file as Simulator.jar Ҧ CƛƴƛǎƘύΦ

5. Copy the Simulator.jar file into the libs folder of both the plugin
projects(ClientControllerPlugin\ libs\Simulator.jar and ServiceProviderPlugin\ libs\Simulator.jar).

6. Create a folder named linux-x86(If the libraries built on 32-bit machine) or linux-x86_64(If the
libraries built on 64-bit machine) under /libs folder of both the plugin projects. (Right-Click on the
ƭƛōǎ ŦƻƭŘŜǊ ǿƘƛŎƘ ǿŜ ŎǊŜŀǘŜŘ ƛƴ ǘƘŜ ǇǊŜǾƛƻǳǎ ǎǘŜǇ Ҧ bŜǿ Ҧ CƻƭŘŜǊ Ҧ {ǇŜŎƛŦȅ ǘƘŜ ŦƻƭŘŜǊ ƴŀƳŜ Ҧ
Finish. Please do this for both plugin projects.)

7. Copy the libraries libSimulatorManager.so, libRamlParser.so, libconnectivity_abstraction.so, liboc.so,
liboctbstack.so, and liboc_logger.so generated previously in ~/iotivity/out/linux/<arch>/release
directory into the corresponding libs/<arch> folder of both the plug-in projects. If the libraries built
on 32-bit machine, then copy them into /libs/linux -x86 and if the libraries are 64-bit, then copy
them into /libs/linux -x86_64.

8. wƛƎƘǘ ŎƭƛŎƪ ǘƘŜ ǇǊƻƧŜŎǘ Ҧ wǳƴ ŀǎ 9ŎƭƛǇǎŜ !ǇǇƭƛŎŀǘƛƻƴΦ

http://download.eclipse.org/eclipse/updates/4.4

9. After launching if it doesn't show the Simulator perspectives(Service Provider & Client Controller),
ǇƭŜŀǎŜ ŎƘƻƻǎŜ ǘƘŜ ǇŜǊǎǇŜŎǘƛǾŜ Ƴŀƴǳŀƭƭȅ ŦǊƻƳ ²ƛƴŘƻǿǎҦ hǇŜƴ tŜǊǎǇŜŎǘƛǾŜ Ҧ hǘƘŜǊΦ

2.3 SIMULATOR ECLIPSE PLUG-IN DEMONSTRATION

2.3.1 Simulator Manager

It manages creation/deletion of single or multiple simulated resources as per the configurations

provided. It creates the simulator resource either with the information provided from RAML file or with

the information provided through GUI wizards.

 Figure 1: Service Provider Perspective

 Figure 2: Creating Resources using create resources wizard

Figure 3: Showing the selected resource with attributes and properties.

 Figure 4: Deleting resources using delete resources wizard

2.3.2 Simulator Resource server

Represents a simulated resource and handles all the requests received and sends proper responses to

client.

Figure 5: Showing requests received and observers information for ΨOIC LightΩ resource

Figure 6: Attribute-level Automation for ΨIntensityΩ attribute ςShowing the Automation Settings

