
IoTivity Secure Resource Manager 
Design Specification and Notes v0.3.4 
Q3 2015 
 
Contributing Authors (alphabetically): 
Sachin Agrawal 
Nathan Heldt-Sheller 
Sakthivel Samidurai 
Shilpa A Sodani 
  



Table of Contents 
Revision History ........................................................................................................................................ 4 

Background ............................................................................................................................................... 4 

Secure Resource Manager (SRM) Overview ............................................................................................. 5 

Request Filtering ................................................................................................................................... 5 

Secure Virtual Resource Management ................................................................................................. 6 

SRM Sub-Module Composition ............................................................................................................. 6 

Resource Manager (RM) ........................................................................................................................... 6 

Policy Engine (PE) ...................................................................................................................................... 7 

Persistent Storage Interface (PSI) ............................................................................................................. 7 

SRM Persistent Storage Degradation and Fallback Behavior ............................................................... 8 

Secure Virtual Resource Data Format ....................................................................................................... 8 

Policy Engine (PE) Design .......................................................................................................................... 8 

PE Flowchart 1....................................................................................................................................... 9 

SRM Source and Header File Naming ..................................................................................................... 10 

SRM Module Sequence Diagrams ........................................................................................................... 10 

Example Access Control List (ACL) flows ............................................................................................. 13 

Public SRM API ........................................................................................................................................ 17 

Appendix A: DTLS Interaction with SRM ................................................................................................. 17 

Appendix B: BeachHead Definition ......................................................................................................... 17 

BeachHead Supported Use Cases ....................................................................................................... 17 

BeachHead Feature List from OIC Security Spec v0.96 errata 1 ......................................................... 18 

BeachHead Milestones and Delivery Schedule ................................................................................... 18 

Appendix C – Gap Analysis with BeachHead Implementation vs. OIC Security Spec v0.96 errata 2 ...... 19 

Appendix D – BaseCamp Feature Definition ........................................................................................... 20 

Features for Functional Correctness ................................................................................................... 20 

Features for Improved/Extended Functionality planned for BaseCamp ............................................ 21 

Features which Are NOT Slated for BaseCamp, but may be started in this time frame anyway ....... 21 

BaseCamp Milestones and Schedule .................................................................................................. 21 

 

 



  



Revision History 
Version Date Author(s) Summary 

0.1 3/4/2015 Heldt-Sheller, Nathan 
<nathan.heldt-
sheller@intel.com> 

Initial revision 

0.1b 3/9/2015 Samidurai, Sakthivel 
<sakthivel.samidurai@intel.com> 
Agrawal, Sachin 
(sachin.agrawal@intel.com) 

PSI API definition and diagram 
RM API definition 

0.1c 3/13/2015 Heldt-Sheller, Nathan 
<nathan.heldt-
sheller@intel.com> 

Misc updates to Design Opens 
Block Transfer Mode section 

0.2 3/20/2015 Heldt-Sheller, Nathan 
<nathan.heldt-
sheller@intel.com> 

Added SRM SVR marshalling design 
agreement, and PE flowchart 1 

0.2a 3/24/2015 Heldt-Sheller, Nathan 
<nathan.heldt-
sheller@intel.com> 

Minor updates 

0.2b 4/15/2015 Heldt-Sheller, Nathan 
<nathan.heldt-
sheller@intel.com> 

Added Appendix B: BeachHead 
definition and timeline 

0.3 5/21/2015 Heldt-Sheller, Nathan 
<nathan.heldt-
sheller@intel.com> 

Added Appendix C: Gap Analysis 
with Spec v0.96 errata 2 

0.3a 5/22/2015 Agrawal, Sachin 
(sachin.agrawal@intel.com) 

Updated ‘DTLS interaction with 
SRM’ 

0.3.1 5/28/2015 Heldt-Sheller, Nathan 
<nathan.heldt-
sheller@intel.com> 

Added Appendix D: BaseCamp 
feature defintion 

0.3.2 6/15/2015 Heldt-Sheller, Nathan 
<nathan.heldt-
sheller@intel.com> 

Added Bootstrap, Provisioning, and 
AMS sequence diagrams 

0.3.3 6/252015 Heldt-Sheller, Nathan 
<nathan.heldt-
sheller@intel.com> 

Elaborated on RM section to clarify 
SVR DB in memory vs Persistent 
Store 

0.3.4 7/9/2015 Heldt-Sheller, Nathan 
<nathan.heldt-
sheller@intel.com> 

Added note to document 
PolicyEngine behavior around 
/doxm.devOwner and 
<resource>.Rowner requests 

 

Background 
The reader is assumed to be familiar with the OIC Specification, in particular the Security chapter.  See 

the latest Security Spec at the OIC webpage, for example “OICSecurityTG-SecuritySpec-

ProjA_v096_Errata2.docx”. 

https://workspace.openinterconnect.org/apps/org/workgroup/cftg/download.php/1485/20150323v0.25%20OIC%20Core%20Specification.docx


Secure Resource Manager (SRM) Overview 

 

Figure 1 - SRM Block Diagram 

At a high level, Secure Resource Manager (SRM) has two roles: Request Filtering, and Secure Virtual 

Resource Management. 

Request Filtering 

When performing this role, SRM receives a request (e.g. GET, PUT, etc.) from Connectivity Abstraction 

layer, and either: 

1. Grants the request (e.g. a read by an authorized Subject) 

2. Denies the request (e.g. a write by an un-authorized Subject) 

3. Responds to the request directly (e.g. write to a Secure Virtual Resource such as an Access 

Control List (ACL)) 

Design Note: for the first version, because SRM doesn't know about Resources (outside of its own SVRs), 

we don't support: 

 Collections (except via a collection-specific URI which is treated as a separate resource)

 Attribute-level access control



 Disambiguating Post(CREATE) from Post(PUT)

o Design Open: This needs to be addressed! 

Secure Virtual Resource Management 

When performing this role, the SRM manages a database of Secure Virtual Resources, keeping them in 

memory and persisting them across restarts. 

SRM Sub-Module Composition 

The SRM has a handful of sub-modules to encapsulate functional blocks.  These are the Resource 

Manager (RM), the Policy Engine (PE) and the Persistent Storage Interface (PSI).  Further information on 

each sub-module can be found in the above-linked chapters dedicated to each module. 

Block Transfer Mode Operation 

At times, the SRM may need to respond to a Request for a SVR with a data payload that is larger than 

the UDP packet size, and thus may need to initiate Block Transfer.  In this case the SRM will use the RI 

layer’s BT mode APIs to initiate a Block Transfer, but will then fill the data payload itself. 

Design Dependency: this implies that the RI layer BT APIs must be exposed appropriately for this use 

model. 

Also note that Resource Requests that are handled via BT will still be checked for access by the SRM.  

Once a BT Request is granted, the RI layer should notify the SRM when the BT is complete, so that the 

SRM can appropriately monitor access request state (e.g. if access should expire during a BT). 

Design Dependency: this implies the RI layer should expose an API for the SRM to revoke a previously-

granted request.  The RI layer should also include a notification to the SRM when the BT is complete. 

TODO [SachinA?]: follow up with RI design and ensure that these requirements make sense at the next 

level of detail, and that they are followed in the RI implementation. 

Resource Manager (RM) 
The Resource Manager is responsible for: 

1. Loading the Secure Virtual Resources to and from persistent storage using the PSI 

2. Supplying the Policy Engine (PE) with Resources upon request 

3. Responding to requests for SVRs 

As mentioned, the RM will load SVRs from persistent storage using the PSI.  The RM is responsible for 

maintaining the privacy and integrity of the SVRs.  Therefore it is recommended that the RM encrypt 

and integrity check the SVRs before storing them to the platform persistent store.  In other words, it is 

suggested that the SVR DB in memory (i.e. the SRM’s “active working set” of SVRs at any given time) be 

the only plaintext version of the SVR DB kept by the SRM.  This will be particularly important if the SRM 

is hardened using a TEE. 



The RM will initially use JSON format to marshal SVR data structures.  When CBOR implementation is 

complete within IoTivity Core, the SRM will migrate to CBOR as a more efficient marshalling format.  This 

choice was agreed upon (as opposed to using a raw binary data format) for a few reasons: 

1. It is preferable to use a standard format for marshaled structures, so that an authoring tool, or 

other policy-controlling application (such as a web-interface) can easily read/write ACLs and 

other SVRs. 

2. Because the oic.sec.* resources (a.k.a. Secure Virtual Resources or SVRs) vary in content and 

length, it is necessary to have some way of knowing when a given optional and/or empty field is 

empty so that the marshaling code can properly handle the structs. 

a. Given this issue, the binary format approach would require a “length” field for each data 

field, and a Variable Length Array approach (where each data field is at the end of a 

struct and declared e.g. “uint8_p data[]”) forces use to use a struct layout different from 

the OIC Spec, which makes it very difficult to reconcile against the Spec for correctness. 

Policy Engine (PE) 
The Policy Engine takes a Request and responds with either “ACCESS_GRANTED” or “ACCESS_DENIED”.  

It also may include a reason code with the response (see source code for more details). In the nominal 

request case, the PE will consult the appropriate Access Control List (ACL), find the best Access Control 

Entry (ACE) that applies to the request, and compare the ACE rights to the Request rights to make a 

determination. 

Finding the best ACE is non-trivial and will be discussed in the Policy Engine (PE) Design chapter. 

Persistent Storage Interface (PSI) 
The PSI supplies the RM with at least five file APIs: 

1. fopen() – opens or creates a file 

2. fread() – reads the contents of a file 

3. fwrite() – writes to a file 

4. fclose() – closes a file 

5. unlink() – deletes an existing file 

These APIs were chosen to permit maximum flexibility to the PM on managing its own memory and 

storage utilization.   

Because persistent storage is platform (OS and hardware) specific, the Application is required to provide 

these functions to the PSI.  The PSI then exposes them to the RM. 

Design Decision: The Application might have supplied the APIs at init-time (e.g. “push” the function ptr 

structure), or it might have provided them upon request via a pre-defined callback (e.g. “pull”).  To stay 

in keeping with existing App-to-RI interfaces, the “push” model was chosen. 



SRM Persistent Storage Degradation and Fallback Behavior 

If at any point during SVR load or store operations, the SRM is unable to successfully complete a file 

operation, the SRM will assume that the Device state has been corrupted.  It will reset to a non-

provisioned state and await discovery and provisioning as if it were a previously-un-provisioned (e.g. 

newly deployed) device. 

Design note: We discussed whether a richer fallback behavior was warranted for IoTivity.  We decided 

that OEMs may (and probably will) want to define their own “fallback” behavior.  We can’t guess what 

they might want to do and didn’t want to spend a lot of time developing a rich failure-mode behavior. 

Secure Virtual Resource Data Format 
For the database of SVRs (e.g. ACLs, keys, creds, etc.) there will be four categories of formatting. 

1. In Memory (the SVRs are in use by the SRM) - database in memory will be internal format (e.g. 

proprietary data structures defined by SRM) 

2. Marshaled (the SVRs are being prepared for storage via PSI, or perhaps for crossing memory 

boundaries within the IoTivity Device stack) - database in flight will be marshaled into JSON 

format.  When CBOR is merged into IoTivity Core, JSON will be replaced with CBOR.  See 

Resource Manager (RM) chapter for discussion on this choice. 

3. In Persistent Store - database in storage will be signed and encrypted with OS or Platform-

provided (as opposed to app-provided) wrapping key.  Note that database will have already 

been marshaled prior to being place in storage.  In the case of an OS-provided key, the 

Application layer must not be able to observe the wrapping key. 

In Flight (traveling off-Device) - database in flight will be signed and encrypted with protocol-specific 

wrapping key (e.g. DTLS).  Note that database will have already been marshaled prior to be sent off-

Device. 

Policy Engine (PE) Design 
The function of the PE is to take a Resource Request from the SRM interface layer (usually being passed 

from the CA layer, to the SRM, and from there into the PE), and use the ACLs in the SVR database to 

repond to the Request with either “ACCESS_GRANTED” or “ACCESS_DENIED” (and an optional reason 

code to explain the denial). 

The PE’s primary complexity is finding not just any Access Control Entry (ACE) which matches the 

request, but rather, to find the best ACE to match a given request.  For example, if a GET Request for 

“Resource1” comes in from the CA with SubjectID “SubjectA”, there may be more than one ACE which 

could apply.   

It is assumed that the Policy Author who created the ACLs for this Device would use the principle of 

Least Privilege, and therefore, that the more specific policy takes precedence.  For example it could be 

that the above Request matches one ACE for SubjectID Anonymous, a second ACE for GroupA to which 

SubjectA belongs, and a third ACE for SubjectA itself.  In this case, the access decision would be made 

based on the third ACE, as it is the more specific of the three.  This would usually be the correct decision, 



unless for some reason Least Privilege had been violated, and Anonymous (for example) had great 

privilege than SubjectA.  This is considered an error in Policy Authoring and would be ignored by the PE. 

Exceptions to the “more specific policy takes precedence” rule are documented here; however, for the 

first version of the PE, there are no exceptions to the rule. 

Also worth noting is that (per Security Specification behavior) the Device Owner (/doxm.devOwner) has 

full CRUDN access to all SVRs, and will be automatically granted access on request for any SVR.  

Similarly, the Resource Owner (e.g. /pstat.Rowner or /cred.Rowner) has full access to the specific 

resource(s) that is owns. 

PE Flowchart 1 

Request arrives
from CA layer.

(SubjectId = άS1")
(Resource = άRέ)

(Permissions = άPέ)

ACL found with 
SubjectID == S1?

RM->GetACL
[SubjectID = S1]

ANON_SEARCH:
RM->GetACL

[SubjectID = Anon]
No

For each ACL 
returned by RM:

PE->GetACE(ACL,R1)
Yes

ACL found with 
SubjectID == Anon?

ACE found with
Resource == R1?

Yes

Any more 
ACLs to check?

No

Return 
ACCESS_DENIED

|
RESOURCE_NOT_FOUND

ACE Permission 
allows P?

Return
ACCESS_GRANTED

Yes

Yes

Return 
ACCESS_DENIED

|
SUBJECT_NOT_FOUND

No

Yes

For each ACE 
returned by PE:

PE->GetACE(ACL,R1)

Any more 
ACEs to check?

No

Return 
ACCESS_DENIED

|
INSUFFICIENT_PERMISSION

No

Yes

Is ACL.SubjectID 
== Anonymous?

No

Yes

Goto
ANON_SEARCH

No

 

Figure 2 - SRM Policy Engine Flowchart 



Note that if access has expired (due to the duration of the Permission object for example) this will result 

in an “ACCESS_DENIED | INSUFFICIENT_PERMISSION” response.  In the case of an Observer who is 

initially ACCESS_GRANTED, but then expires, the SRM will send a notification that access is no longer 

allowed.  For example the final message might be “ACCESS_DENIED | INSUFFICIENT_PERMISSION”, or 

we might add another reason code or access response. 

TODO [NathanHS] Implementation Open: should we re-ǳǎŜ ά!//9{{ψ59bL95 μ 

Lb{¦CCL/L9b¢ψt9waL{{Lhbέ ƻǊ ŀŘŘ ŀ ƴŜǿ ǊŜǎǇƻƴǎŜ ŎƻŘŜ ƻŦ ǎƻƳŜ ǎƻǊǘ ŦƻǊ hōǎŜǊǾŜǊǎ ǿƘƻǎŜ ŀŎŎŜǎǎ 

expires? 

TODO [NathanHSϐ ¦ǇŘŀǘŜ ŀōƻǾŜ t9 ŦƭƻǿŎƘŀǊǘ ŦƻǊ ŀƭƭƻǿƛƴƎ ΨŘŜǾƛŎŜ ƻǿƴŜǊΩ ŀƭƭ ŀŎŎŜǎǎ ǿƛǘƘƻǳǘ ŎƘŜŎƪƛƴƎ 

!/[ΩǎΦ 

SRM Source and Header File Naming 
Files will be in all lower case and placed in the csdk/security folder (or subfolders therein).  Examples 

include “/src/secureresourcemanager.c”, “/include/secureresourcetypes.h”, etc. 

SRM Module Sequence Diagrams 

Client-Driven Just-Works Device On-Boardin g 

In Figure 3, a Provisioning Tool takes ownership of a New Device using Client-Driven mode (i.e. the state 

advancement is driven by the Provisioning Tool running on the Client Device), and “Just Works” 

Ownership Transfer Method. 



 

Figure 3 – “Just Works” ownership transfer sequence diagram 

 

Client-Driven ACL Provisioning 

In Figure 4, a Provisioning Tool installs an /oic/sec/acl resource on a Server Device which it has 

previously taken ownership of. 



 

Figure 4 – ACL Provisioning after Ownership Transfer 

General REST Get/put/delete/post/observe request  flow  

In Figure 5, a Client issues a get, put, delete, post or observe request to a Server.  Server refers to the 

ACL database, finds an Access Control Entry (ACE) for the request, and grants/denies the request: 

 



 

Figure 5 – Get/put/delete/post/observe request 

Example Access Control List (ACL) flows 

Resource1 Read request from Anonymous is allowed via ACL 

In Figure 6, Anonymous Client issues a request to Read “Resource1” from Server.  Server refers to the 

ACL database, finds an Access Control Entry (ACE) for Anonymous with R-only permissions, and grants 

the Read request: 

CA CA SRM

OnCARequestReceived

Send Request

CAHandleRequestResponse

CA Initialize

CAStartListeningServer

CASendResponse

RI

CAResponseHandler

RI

GET/PUT/DELETE/POST request

Recource information

SRM RegisterHandler

CA RegisterHandler

CA Select Network

[access=allow]OnSRMRequestReceived

HandleRequest

CAHandleRequestResponse

ReadData

Client Server

[access=DENY]CASendResponse

CA Initialize

CA Select Network

CA RegisterHandler

CAStartDiscoveryServer

SRMΩs PolicyEngine refers 
to ACL corresponding to /
oic/light and access/deny 

the request



 

Figure 6 – Resource1 Read request from Anonymous is allowed via ACL 

Resource1 Write request from Anonymous is denied via ACL 

In Figure 7, Anonymous Client issues a request to Write “Resource1” to Server.  Server refers to the ACL 

database, finds an Access Control Entry (ACE) for Anonymous with R-only permissions, and denies the 

Write request: 

 

Figure 7 – Resource1 Read request from SubjectA is allowed via ACL 

Resource2 Read request from SubjectA is allowed via ACL 

In Figure 8, Client previously identified as SubjectA issues a request to Read “Resource2” from Server.  

Server refers to the ACL database, finds an Access Control Entry (ACE) for SubjectA with full CRUD 

permissions, and grants the Read request: 



 

Figure 8 – Resource2 Read request from SubjectA is allowed via ACL 

Resource2 Read request from SubjectB is denied via missing ACL 

In Figure 9, Client previously identified as SubjectB issues a request to Read “Resource2” from Server.  

Server refers to the ACL database, cannot find an Access Control List for SubjectB, and denies the Read 

request: 

 

Figure 9 – Resource2 Read request from SubjectB is denied via missing ACL 

Server Device refers to Access Management Service (AMS) to determine access rights 

In Figure 10, a Server device cannot find a local /acl which corresponds to a resource request, but it does 

find an /amacl resource, and uses the referenced AMS to resolve the access rights for the resource 

request. 



 

Figure 10 – SRM refers to AMS for access decision 

Note: for clarification, the Figure 10 step which is labeled as “SRM looks up AMACL corresponding to 

resource “Resource1”, and finds /amacl containing a oic.sec.ams, …” entails the following steps : 

1. SRM calls into /amacl Entity Hander “GetNextAmaclByResource(<R1>)” and gets back a list of /amacl 

objects whose Resource match the <R1> arg. 

2. SRM dereferences the first /amacl.Ams to get a /oic/sec/svc object (the rest of the list are for 

redundancy) 

3. SRM opens the /oic/sec/svc object, and reads the <ServerDeviceId>, <ServerCredId> and 

<ClientCredId> Properties 

4. SRM would then call into /cred EH using method like “GetCredentialById(<ServerCredId>)” and 

likewise for the <ClientCredId> 

5. SRM discovers the <ServerDeviceId> Device using multicast message (I know we have an open here 

on exactly what the multicast looks like… so there is a TBD in this step) 

6. SRM connects to the AMS via the IP, port, and /cred objects from steps 4 & 5 



 

Public SRM API 

SRMRegisterHandler 

Resource Introspection (RI) layer call this API to register ‘request’ and ‘response’ callbacks. When stack is 

compiled for ‘SECURED’ mode, SRM caches these callback pointers and register SRM’s callback methods 

(SRMRequestHandler and SRMResponseHandler) with Connection Abstraction (CA) layer via 

CARegisterHandler API.  

SRMRegisterPersistentStorageHandler  

Design Decision:  It was considered whether RI should provide the PSI API to the SRM, or whether the SRM 

should call the App directly.  It was decided that the RI should provide the API to the SRM, so that the RI 

layer can make use of PSI if needed, and the SRM continues to be disconnected from the App.  It was also 

determined that the performance overhead of this additional layer would be nominal as it would only be 

incurred at setup time, after which the function ptrs for Persistent Storage would be invoked directly. 

Appendix A: DTLS Interaction with SRM 
DTLS interface in CA layer maintains a mapping of ‘Subject ID’ and ‘IP address + Port number’. This 

mapping is generated when Iotivity stack initiates a DTLS handshake with another device. ‘SubjectID’ is 

exchanged between two DTLS end-points along with ‘ClientKeyExchange’ and ‘ServerKeyExchange’ 

handshake messages. When a REST (GET/PUT/POST/DEL) request is received at CA layer in Server, it looks 

up this mapping table for the corresponding ‘Subject ID’ and attaches it with the ‘request’. Policy Engine 

uses this ‘Subject ID’ to look up the corresponding ACL in the ACL resource to make a decision regarding 

access control for this ‘request’.  

Appendix B: BeachHead Definition 
BeachHead is the codename for the initial functional implementation of SRM and Provisioning Tool 

scheduled for delivery in Q2 2015. 

BeachHead is meant to supply a minimum set of functionality to enable the following high-level Use 

Cases.  Note that for these use cases, we assume a Linux Server Device and a Linux Provisioning Tool.  

Subsequent versions plan to support Arduino Server Device and Android Provisioning Tool, among 

others. 

BeachHead Supported Use Cases 

1. Onboarding (aka Take Ownership) of New Server Device 

a. The Provisioning Tool discovers and takes ownership of a newly-deployed Server Device 

2. Provision New Device 

a. The Provisioning Tool installs at least one Access Control List (/oic/sec/acl) and one 

Credential (/oic/sec/cred) to the New Server Device 

3. Deny Access Request 

a. The newly-provisioned ACL is used to respond “ACCESS_DENIED” to at least one REST 

request which is not allowed via the ACL 



4. Grant Access Request 

a. The newly-provisioned ACL is used to respond “ACCESS_GRANTED” to at least one REST 

request which is allowed via the ACL 

BeachHead Feature List from OIC Security Spec v0.96 errata 1 

BeachHead is not intended to be SpecA compliant.  BeachHead will not support, among other things, 

Server Device driven provisioning, or Multi-Service provisioning.  BeachHead will also not support a 

variety of Secure Virtual Resource types.  It is more concise to list what will be supported from Spec 

v0.97: 

1. Device and Resource level access control, as described in section 5.1 (but not Group or Property 

level) 

2. OIC Security Onboarding model, as outlined by section 5.2 (see below for supported Owner 

Transfer methods) 

3. OIC Security Provisioning model, as described by section 5.3 

4. Create/Read/Update/Delete/Notify (CRUDN) permissions support for Access Control as 

described in section 6 

a. As mentioned previously in this document, POST(CREATE) and POST(WRITE) can only be 

disambiguated for Secure Virtual Resources.  For application-defined Resources, Create 

and Update privileges are effectively the same and are equivalent to one another. 

5. “Just Works” Owner Transfer method, as described in section 7.2.3 

6. Device Owner Transfer Method SVR “/oic/sec/doxm”, as described in section 7.2.4 

7. Credential provisioning, as described in section 7.3.3 

8. Access Control List (ACL) provisioning, as described in section 7.3.4 

9. Provisioning Status SVR “/oic/sec/pstat”, as described in section 7.5 

a. only Operation Mode 0b11 is supported, i.e. Client-driven, Single-service 

b. CommitHash will be placeholder, always computed to 0x0 so that it’s always “correct” 

and passes the comparison test 

10. Session Protection with DTLS, as described in section 8 

a. TLS-PSK-AES-CCM-128 ciphersuite, as described in section 8.1.1 

11. Device Credential SVR “/oic/sec/cred”, as described in section 8.2.1 

12. Simple Access Control, as described in section 9 

13. Local Access Control SVR “/oic/sec/acl”, as described in section 9.4 

14. ACL Evaluation, as described in section 9.6 

In addition, the BeadHead “Provisioning Tool” will support the onboarding and provisioning flow as 

described in “Provisioning Flow for Beach Head version v0.1.pptx” (which is being added to the next 

version of the OIC Security Spec, as well). 

BeachHead Milestones and Delivery Schedule 

BeachHead implementation has begun already as of 4/15/2015.  The code-complete milestone is April 

24th, which includes: 



1. All SRM and related code (including unit tests) pushed to Gerrit, peer-reviewed, and merged to 

“security-M3” branch (Intel deliverable) 

2. All Provisioning Tool and related code (including unit tests) pushed to Gerrit, peer-reviewed, and 

merged to “security-M3” branch (Samsung deliverable) 

The end-to-end functional milestone is scheduled for May 5th, which includes integration of #1 and #2 

from code-complete milestone, and the ability to demonstrate all use cases defined in BeachHead 

Supported Use Cases above. 

Appendix C – Gap Analysis with BeachHead Implementation vs. OIC Security 

Spec v0.96 errata 2 
The following list of gaps have been identified between the BeachHead implementation of IoTivty, and 

the OIC Secuirty Spec v0.96 errata 2.  The page and line number are listed, along with at some times a 

section reference.  Gaps without a particular page/line are listed as “Spec (general)” and come from the 

v0.96 errata 2 Spec in one or more places.  Additional gaps have been included from speculative Spec B 

analysis and are marked “Spec B”. 

Title 
Requirement 
Source 

Add /oic/sec/amacl to supported Resource Types (including Entity Handler) p.14#23 (5.4) 

Add /oic/sec/sacl to supported Resource Types (including Entity Handler) p.15#1 (5.4) 

Add /oic/sec/svc to supported Resource Types (including Entity Handler) p.15#3 (5.4) 

Update all SVRs to use /oic/sec/svc Resource Types where appropriate 
Spec 

(general) 

Complete missing elements in /acl, /cred, /doxm and /pstat 
Spec 

(general) 

Review SVR update policy for supported provisiong and oxm types 
Spec 

(general) 

Add Delete support to SRM Entity Handlers 
Spec 

(general) 

Add /ams logic to SRM 
Spec 

(general) 

Implement Pre-provisioned Device PIN ownership transfer method p18#26 

Add "role" support to SRM p41#4 (8.1.3) 

Dynamic key provisioning and Pair-wise Key Generation p43#11 (8.3) 

Add Fluffy Key Mgmt support for Device->Device (pairwise) to SRM Spec B 

Add Fluffy Key Mgmt support for GSKs to SRM Spec B 

Implement Mode Switch ownership transfer method p18#26 

Implement Random Device PIN ownership transfer method p18#26 

256-bit key support p19#32 

JustWorks Cipher Suite: TLS_ECDH_ANON_WITH_AES_256_CBC_SHA  p20#10 

JustWorks Cipher Suite: TLS_ECDH_ANON_WITH_AES_128_CBC_SHA256 p21#1 

JustWorks Cipher Suite: TLS_ECDH_ANON_WITH_AES_256_CBC_SHA256  p21#2 



Device Class 0-2 OPTIONAL Cipher Suite: 
TLS_ECDH_ANON_WITH_AES_128_CBC_SHA256 p21#9 

Device Class 0-2 OPTIONAL Cipher Suite: TLS_ECDH_ANON_WITH_AES_256_CBC_SHA p21#10 

Device Class 0-2 OPTIONAL Cipher Suite: 
TLS_ECDH_ANON_WITH_AES_256_CBC_SHA256 p21#11 

Device Class 3+ and higher MANDATORY Cipher Suite: 
TLS_ECDH_ANON_WITH_AES_128_CBC_SHA256 p21#13 

Device Class 3+ and higher MANDATORY Cipher Suite: 
TLS_ECDH_ANON_WITH_AES_256_CBC_SHA p21#14 

Device Class 3+ and higher MANDATORY Cipher Suite: 
TLS_ECDH_ANON_WITH_AES_256_CBC_SHA256 p21#15 

Leverage Exposed Platform-hardened Key/Cred/etc storage p40#3 

Encrypt PSI storage 
Spec 

(general) 

Implement CBOR support in SRM Spec B 

Add Fluffy RA support to SRM Spec B 

Binding between device context and platform implementing device p.11#15 (5.3) 

Permission check at time of issuing Slow Response or Observe Notification 
Spec 

(general) 

Apply policy to presence notifications 
Spec 

(general) 

 

Appendix D – BaseCamp Feature Definition 
BaseCamp is the next major release of IoTivity Security slated for end of July 2015, and is meant to close 

the remaining “must-have” gaps between Error! Reference source not found. and OIC Security Spec 

0.96 errata 2 (the latest official OIC Spec version at the time of BaseCamp definition). 

To close the gaps identified in Error! Reference source not found., BaseCamp will implement the 

ollowing features: 

Features for Functional Correctness 

1. Add /oic/sec/amacl to supported Resource Types (including Entity Handler) 

a. Source: Spec p.14#23 (5.4) 

2. Add /oic/sec/sacl to supported Resource Types (including Entity Handler) 

a. Source: Spec p.15#1 (5.4) 

3. Add /oic/sec/svc to supported Resource Types (including Entity Handler)  

a. Source: Spec p.15#3 (5.4) 

4. Update all SVRs to use /oic/sec/svc Resource Types where appropriate 

a. Source: Spec general 

5. Complete missing fields in /acl 

a. Source: Spec general 

6. Complete missing fields in /cred 

a. Source: Spec general 



7. Complete missing fields in /doxm 

a. Source: Spec general 

8. Complete missing fields in /pstat 

a. Source: Spec general 

9. Review SVR update policy for supported provisiong and oxm types 

a. Source: Spec general 

10. Add DELETE support to SRM Entity Handlers 

a. Source: Spec general 

11. Add /ams logic to SRM 

12. Source: Spec general 

Features for Improved/Extended Functionality planned for BaseCamp 

1. Implement Pre-provisioned Device PIN ownership transfer method 

a. Source: Spec p18#26 

2. <TBD> on completion of OSWG Security TG discussions on Spec B features for BaseCamp 

Features which Are NOT Slated for BaseCamp, but may be started in this time frame anyway 

There are a handful of high priority “Advanced Functionality” or Spec B features, which are currently 

viewed as critical for the next version after BaseCamp, and which may be complex enough that they 

should be started during BaseCamp dev cycle. 

1. Add Fluffy Key Mgmt support for Pairwise Keys to SRM 

a. Source: Spec B 

2. Integrate CBOR into SRM 

a. Source: Spec B 

BaseCamp Milestones and Schedule 

BaseCamp is slated to be feature complete and merged with IoTivity Master by July 10th.  This leaves a 

few weeks for Integration/Testing before the IoTivity 0.9.2 release date of end of July. 


